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Abstract
How do we model and find outliers in Twitter data?
Given the number of retweets of each person on a so-
cial network, what is their expected number of com-
ments? Real-life data are often very skewed, exhibit-
ing power-law-like behavior. For such skewed multi-
dimensional discrete data, the existing models are not
general enough to capture various realistic scenarios,
and often need to be discretized as they often model
continuous quantities. We propose FusionRP, short
for Fusion Restaurant Process, a simple and intuitive
model for skewed multi-dimensional discrete distribu-
tions, such as number of retweets vs. comments in
Twitter-like data. Our model is discrete by design,
has provably asymptotic log-logistic sum of marginals
, is general enough to capture varied relationships, and
most importantly, and fits the real data very well. We
give an effective and scalable maximum-likelihood based
fitting approach that is linear in the number of unique
observed values and the input dimension. We test
FusionRP on a twitter-like social network with 2.2M
users, a phone call network with 1.9M call records, game
data with 45M users and Facebook data with 2.5M posts.
Our results show that FusionRP significantly outper-
forms several alternative methods and can detect out-
liers, such as bot-like behaviors in the Facebook data.

1 Introduction
If “Alice” has 1000 wall-posts on her Facebook account,
how many friends would you guess she has? If “Bob” has
played our online game 200 times last month, totaling
500 minutes of play, and has spent $10 on digital items
for the game, is he a human, or a bot?
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The key to answering both questions is to charac-
terize joint, multi-dimensional distributions (of friends-
and-posts, for the case of Alice, of logins-minutes-dollars
for the case of Bob) that are very skewed. Most real-life
data are skewed. The traditional multivariate normal
distribution fails miserably, even as it tries to model the
marginals: none of them have negative values (that a
Gaussian permits); all of them are skewed, with heavy
tails, that a Gaussian fails to match. Skewed distri-
butions, like the multivariate Pareto [17, 24, 14], and
the very recent Almond-DG [10], also have shortcom-
ings, as we discuss in Section 2.2. For example, some
methods, such as the one in [25] fails to capture pos-
itive or negative correlations. An example of positive
correlation would be between wall-posts and friends:
the more friends one has on Facebook, the more posts
he/she should see. For example, negative correlation
could be between phone calls and texts: some people
prefer talking over typing, and thus have many more
phone-calls than texts, while others (typically, younger
people) prefer the reverse - thus we may have a negative
correlation.

Figure 1 illustrates the modeling power of our pro-
posed FusionRP: Figure 1(a) illustrates the excellent
fit of our FusionRP, to real phone call data: the dashed
lines are iso-probability lines (contours) of the real data,
while the solid lines are the iso-probability lines of our
proposed FusionRP. Notice that the iso-probability
lines are ellipsoid-looking, indicating “attraction” be-
tween the count of incoming, and outgoing phone calls
(the more you call, the more you will be called). Fig-
ure 1(b) shows the fit for real, twitter-like data. Again,
the solid lines are the iso-surfaces of real data (count of
retweets vs. count of comments), and the dashed lines
are the iso-surfaces of our fitted model FusionRP. No-
tice the “replulsion”: most people will either have a lot
of retweets, or a lot of comments, but not both. Fur-
ther, as summarized in Table 1, most of these skewed
multivariate distributions can be satisfactorily extended
beyond 2-D to the question at hand, a problem we ad-
dress with our FusionRP.

In summary, the contributions of this work are the



(a) Call-in VS Call-out (b) Retweets VS Comments (c) Performance comparison

Figure 1: Goodness of fit of FusionRP: (a-b) Fitting the “call-in VS call-out" and the “retweets VS comments" datasets:
real iso-surfaces are in dashed lines; the estimates of FusionRP are in solid lines - notice how close they are. (c) relative
log-likelihood on unseen test data: all competitors lose to FusionRP- their ratio is 1.0 or higher.

following:
• Model: We present a simple, skewed, d-

dimensional distribution. It fits real data well and
is flexible enough to model a diverse range of sce-
narios. We test it successfully on 2 to 5-D data.

• Analysis: We analyze the theoretical properties
of this model and present theoretically motivated
and scalable fitting algorithm and outlier detection
procedure.

• Applicability: As an immediate consequence of
a good model and fitting procedure, we can flag
points that do not fit the model as outliers. In our
experiments, FusionRP finds bot-like behavior
as outliers in Facebook wallpost data.

• Reproducibility: We have made our code open-
source1 for reproducibility.
The structure of the paper is typical. Next we

give the survey, and then the proposed method and
its analysis, algorithms for fitting and outlier detection,
followed by experiments and conclusions.

2 Background and Related Work
A vast majority of work has been done on univariate
skewed distributions, which are well understood both in
theory and practice. Multivariate distributions, on the
other hand, are well-studied in theory, but not so much
in the context of skewed data [24].

2.1 1-D skewed distributions

2.1.1 The Yule distribution and Yule-Simon Pro-

cess. The Yule distribution or the Yule-Simon distribu-
tion is a skewed distribution supported on the set of

1Code can be found at https://github.com/krishnap25/

FusionRP

positive integers, and a parameter ⇢ has the mass func-
tion:

pYule(k; ⇢) = ⇢B(k, ⇢+ 1)(2.1)

where B is the Legendre Beta function. The Yule-
Simon Process or preferential attachment [27, 21] is a
discrete-time stochastic process. Following convention,
the model is described in terms of a restaurant here.

Suppose there is a restaurant with an infinite num-
ber of tables, each with infinite capacity. N customers
enter the restaurant one after another. The first cus-
tomer occupies any empty table. In a scheme where
“the rich get richer", customer number i, joins a table
j with a probability proportional to the current size of
the table, m

j

or occupies a new table with probability
s. If z

i

is the table he/she joins, and we have k tables
so far, we have,

(2.2) P (z
i

= j|z�i

, s) =

⇢
(1� s)

mj

i�1 if j  k

s if j = k + 1

Note that this is different from the Chinese Restaurant
Process (CRP) [28] (see eq 2.3), introduced by Pitman,
which is a Dirichlet Process. In the CRP, the proba-
bility of starting a new table reduces as we have more
customers, but is a constant in the Yule-Simon process.

(2.3) P (z
i

= j|z�i

,↵) =

⇢
mj

i�1+↵

if j  k
↵

i�1+↵

if j = k + 1

Lemma 2.1. ([21]) The limiting distribution of table

sizes of Yule-Simon process as N ! 1 is Yule(

1
1�s

).

The beta function has a power-law tail B(a, b) ⇡
�(b)a�b when a is large and b is fixed. Thus, the
probability of observing a table of size k also has a
power-law tail, where the exponent is: ↵ = 1 +

1/1�s.
Hence, the Yule-Simon process is popular in modeling



Data Multivariate Multivariate Bivariate
Almond-DG FusionRP

properties Gaussian Pareto Yule

Multi-dimensional? X X ? X
Nonnegative? X X X X

Containing zero? X X X X
Discrete by design? X X
Skewed marginal? X X X X

Attraction? X X X
Repulsion? X X

Table 1: Superiority of FusionRP over existing approaches: It can model multi-dimensional, nonnegative, discrete data
with skewed marginals and repulsion/attraction/indifference.

real-world power-law data such as word frequencies [21].
Note that vanilla CRP has exponential tails, and not
power law tails.

2.1.2 Log-logistic distribution. The log-logistic dis-
tribution is a continuous distribution defined on x � 0,
with CDF F (x;↵,�) = (1 + (x/↵)��

)

�1, ↵ > 0,� > 0.
The odds-ratio of this distribution or its truncated ver-
sion [23] follow a power law and hence, naturally finds
application in modeling skewed data.For instance, Devi-
neni et al [5] use PowerWall, a discrete log-logistic dis-
tribution to model the broadcasting behaviors on Face-
book users using wallpost properties.

2.1.3 Pareto and Lognormal Distributions. The
Pareto distribution was originally used to model alloca-
tion of wealth amongst individuals [4], which has since
become famous as the 80-20 rule: that 20% of the peo-
ple own 80% of the society’s wealth. For any power
law distribution, the CCDF, defined as Pr(X � x), will
be a straight line in log-log scale. The Pareto distribu-
tion satisfies this requirement by definition, but it has
a necessarily positive minimum x

m

, and this can be a
drawback. A random variable is lognormal iff its log-
arithm is Gaussian. It is continuous and its CCDF is
almost a straight line for a large part [16].

2.2 Multi-dimensional skewed distributions

2.2.1 Almond-DG. The Almond-DG [10] model com-
bines log-logistic marginals with the concept of “copu-
las" in order to generate a bivariate distribution. Cop-
ulas have been successfully used to model the rainfall
frequency as a joint distribution of rain characteris-
tics (e.g., volume, duration), to capture the dependence
between loss and the corresponding adjustment costs
to calculate insurance premiums, and more. Although
Almond-DG is proposed for modelling skewed data (e.g.

counts), which are discrete by nature, it starts by mod-
elling continuous data and continues with a discretiza-
tion step. While this is not much of a problem for large
numbers, it may alter the distribution of a vast ma-
jority of the observations that occur at the head (near
zero). Moreover, while the original paper does not con-
sider higher dimensions, the extension of Almond-DG to
more dimensions is possible, but requires almost twice
as many parameters as FusionRP.

2.2.2 Bivariate Yule, Pareto and Lognormal. Bi-
variate versions of log-normal and Pareto distributions
have been proposed [26, 17, 24, 14] for applications such
as drought and flood predictions, but these methods suf-
fer the same drawbacks as their 1D variants. A bivariate
Yule model was proposed in [25], but it cannot model
attraction or repulsion and hence, cannot model real
data very well.

Table 1 compares most of the existing skewed multi-
dimensional distribution models and FusionRP.

2.3 Outlier Detection Outliers, as per Barnett and
Lewis [2] are “observation(s) which appears to be in-
consistent with the remainder of that set of data”.
Traditional techniques of outlier or anomaly detec-
tion are based on local density estimaties such as k-
nearest neighbors. Examples include Local Outlier Fac-
tor (LOF) [3] and its numerous variants [22, 19, 20, 12].

These methods proceed in two phases: the first
phase is to estimate the density in some form, and the
second is to compare it with the density of its k nearest
neighbors. Another approach uses angles instead [11].

But these methods are, as the names suggest, local
and do not capture global patterns in data.

3 Proposed Method: FusionRP

In this section, we propose our method, Fusion Restau-
rant Process (FusionRP), to model skewed multi-



Symbol Description

N the total number of customers in the restaurant
n the number of occupied tables

m(j) the number of customers on table j

p

(j) the parameter of the multinomial distribution of table j

↵ the parameter of the Dirichlet distribution that generates p

(j) for each table j
s the probability that a customer joins a new table, and ⇢ = 1/(1� s)

x

(j) distribution of customers on table j; more generally, the quantity we model
d the dimensionality of x,↵,p

Table 2: Notation used in the paper.

dimensional distributions such as #Retweets vs #Com-
ments of Twitter users. We analyze the properties of
FusionRP, and propose theoretically motivated and
scalable algorithms for distribution fitting and anomaly
detection. All proofs from this section have been pro-
vided in the appendix.

3.1 Intuition Following the restaurant metaphor,
imagine a fusion restaurant that serves multiple
cuisines, with an infinite number of tables each with
infinite capacity, and there are two categories of dishes,
e.g., Italian and Japanese. Suppose each customer has
to choose a cuisine. N customers enter the restaurant
one after another, and each chooses a table at random
to sit down. The number of customers at a table is
modeled by the Yule-Simon process. That is, the first
customer comes in the restaurant and sits at the first
table and the ith customer, i > 1 sits at an occupied
table, or at the next unoccupied table according to the
distribution defined by Eq. 2.2. Note that the Dirichlet
Process CRP of Eq. 2.3 is not used here because it has
exponential tails. Yule-Simon process gives us power
law tails that better agree with our data.

After all the customers have sat down, for each
table j with m(j) customers, a biased coin c

j

with
probability p

j

is sampled from a beta distribution i.e.,
p
j

⇠ Beta(↵1,↵2). Each customer on table j tosses
the biased coin c

j

. She picks Italian dishes if the coin
shows heads and Japanese dishes otherwise. The pa-
rameters ↵1,↵2 determine the attraction, repulsion or
indifference between customers choosing different types
of dishes. Let x(j)

1 and x
(j)
2 be the number of customers

that take Italian dishes and Japanese dishes respectively
on table j, where x

(j)
1 + x

(j)
2 = m(j). In keeping with

the tradition of using restaurant metaphors, we name
our model of the joint density of (x

(j)
1 , x

(j)
2 ) as Fusion

Restaurant Process or FusionRP in short. In the Twit-
ter example, for instance, each table would represent a
user, and each customer enjoying Italian (Japanese) cui-

sine would represent a retweet (comment).

3.2 Model Let x = (x1, ..., xd

)

T 2 Z⇤
d be the

quantity we wish to model, where Z⇤ is the set of non-
negative integers. We use parameters s 2 R and ↵ 2 Rd

for our model. Let m = x

T

1 � 1 be the total number
of customers at a table, where 1 = [1, 1, ..1]T 2 Rd is
the vector of all ones. Also, let ⇢ = (1� s)

�1, for ease
of notation.

The generative process of FusionRP is:

m|⇢ ⇠ Yule(⇢)(3.4a)
p|↵ ⇠ Dir(↵)(3.4b)

x|m,p ⇠ Mult(m,p)(3.4c)

Here, ‘Dir’ and ‘Mult’ denote Dirichlet and Multinomial
distributions respectively. Note that x|m,↵ is exactly
the Dirichlet-Multinomial distribution [13], also known
as the Polya distribution. It is commonly used in
document classification to model distributions of word
counts. The multinomial distribution is a natural choice
to categorize customers into connoisseurs of a single
cuisine (Italian or Japanese, in the above example).
However, multinomial distribution with a fixed p cannot
model all variations of real data. Hence, we draw p from
its conjugate prior, a Dirichlet distribution. For the 2-D
example above, the beta distribution is a special case of
the Dirichlet.Table 2 summarizes notation used.

We can compute the probability mass function
(pmf) of FusionRP in closed form.

Proposition 3.1. The pmf of FusionRP is:

p(x|⇢,↵) = ⇢B(x

T

1, 1 + ⇢)
B(x+↵)

B(↵)

�(x

T

1+ 1)

Q
d

i=1 �(xi

+ 1)

Observation 3.1. FusionRP can capture varied rela-

tionships in the data and this is determined by compo-

nents of ↵ relative to each other and to 1.

For instance, for d = 2, ↵1 = ↵2 = 1 represents
indifference, ↵1 > 1,↵2 > 1 is attraction, ↵1 <



1,↵2 < 1 is repulsion. Also, ↵1 > 1,↵2 < 1

describes a scenario in our restaurant metaphor, where
a customer ordering Italian dishes, corresponding to
↵1 would be attracted to other customers, whereas
a customer ordering Japanese dishes stays away from
other customers. Refer to figure 2 for plots of iso-
probability lines of these scenarios.

For all tables of a fixed size, attraction means that
we are more likely to see customers of both cusines to-
gether on a table while repulsion means each table is
more likely to be dominated by a single cuisine and in-
difference means that all combinations are equally likely.
Note that these are not the same as statistical indepen-
dence and positive/negative correlation as two indepen-
dent Gaussians exhibit attraction where as independent
log-logistic random variables repel each other.

3.3 Union Marginals To look at marginals, we
define the notion of the union-marginals. Intuitively, in
our fusion restaurant with d cuisines, if we group some
cuisines into categories, the distribution of customers
on these categories is a union-marginal. The univariate
union-marginal gives the number of customers at a table
since all cuisines are grouped into one category.

Definition 3.1. A Union-marginal of a distribution

of x = (x1, ..., xd

)

T

corresponding to a partition I =

{I1, ..., Ik} of dimensions is the distribution of x

I

=

(

P
i2I1

x
i

, ...,
P

i2Ik
x
i

)

T

. In particular, the univariate

union-marginal of x is the distribution of x

T

1.

The following theorem states that FusionRP is
consistent in the sense that each union-marginal is
another FusionRP with different parameters.

Theorem 3.1. Union-marginals of FusionRP(s,↵)

corresponding to the partition I = {I1, ..., Ik} are dis-

tributed according to FusionRP(s,↵
I

) where ↵
I

=

(

P
i2I1

↵
i

, ...,
P

i2Ik
↵
i

). In particular, univariate

union-marginal of FusionRP follows a Yule distribu-

tion and has an asymptotically log-logistic tail.

3.4 Parameter Estimation Given a dataset X =

{x(1), ...,x(n)}, we wish to estimate parameters ✓ =

{s,↵}. By observing the generative process, it can be
seen that estimations of s and ↵ are decoupled.

The estimation of s of the Yule-Simon process
admits a very simple solution: the moment matching
estimate. Let N =

P
n

j=1 m
(j) be the total number of

customers in the restaurant. This estimate is: ŝ = n/N .
For ↵, we use Newton’s method to find the Maxi-

mum Likelihood Estimator (MLE), ˆ↵ and this can be
done efficiently [15]. We use the moment matching es-
timate of ↵0 from x

1/m1,x2/m2, ...,xn/mn ⇠ Dir(↵0)

as a warm start. Further details of the algorithm may
be found in the appendix.

Proposition 3.2. Parameter estimation of Fu-
sionRP is linear on the input size, that is, it runs

in time O(n0d), where n0 is the number of unique

observations and d is the dimensionality.

3.5 Outlier Detection We use the parametric form
of our model to derive an outlier detection procedure.
Unlike traditional outlier detection procedures such as
LOF [3], we do not have any user-defined parameters,
which affect the performance.

For a point x

i in X = {x1,x2, ...,xn}, define
�
i

= np(xi

) to be the expected number of times x

appears, where p(.) is the pmf of FusionRP.We can
define a confidence interval C

i

(�) for �
i

based on the
the multiplicity n

i

of xi i.e. the number of times each
unique x

i is seen, as follows:

C
i

(�) =
h
1

2

�2
��
2

; 2n
i

�
,
1

2

�2
�
1� �

2

; 2n
i

+ 2

�i
(3.5)

Here, �2
(q; k) is the qth quantile of the �2 distribution

with k degrees of freedom.

Theorem 3.2. The confidence interval C
i

(�) of Eq.

3.5 is an approximate (1 � �) confidence interval for

�
i

, the expected number of observations at x

i

.

We also give an anomaly score as the number of
standard deviations of the expected count �

i

from the
confidence interval C

i

(�) = [C
l

, C
u

]: (�
i

� C
u

)/
p
�
i

if �
i

> C
u

, (C
l

� �
i

)/
p
�
i

if �
i

< C
l

and zero
otherwise. Points with high anomaly score lie far from
the confidence interval, and may be investigated further.

Speedwise, this method is linear in the number of
unique observations, n0 and the dimensionality d. Local
methods such as LOF are close to quadratic in n and
may be infeasible for large applications. In practice, our
algorithm is robust to the choice of �. We demonstrate
an application of this method in action in Section 4.

3.6 The model in hindsight Overall, the three-
stage model and the choice of stages (Yule and Dirichlet-
Multinomial) gives us flexibility to model various real,
long-tailed distributions while still being able to effi-
ciently and acceptably estimate parameters. In partic-
ular, we use the Yule distribution because it generates
long, power-law tails that closely match empirical ob-
servations.

4 Experiments
Here we report experiments to answer the following
questions:



Q1. Flexibility and Generality: What can Fu-
sionRP model?

Q2. Applicability: How well does FusionRP work on
real data?

Q3. Scalability: How fast is FusionRP?
Q4. Practicality: What is the practical use of Fu-

sionRP?
We evaluate the proposed method on four datasets:

1. Phone call [6]. The dataset is made of a large
collection of call records provided by a mobile
communication company. It contains 1.9 million
call records of 202,897 users during one month.
We extract and use the number of incoming and
outgoing calls for each user.

2. Game [7]. The game dataset comprises user ac-
tivities for 45,429,334 users in a large online game
during July and August 2014. For each user, we
extract the number of days logged on to the game,
and the number of items purchased in the game.

3. Tencent Weibo [18]. Tencent Weibo is a popular
Twitter-like microblogging service in China. The
dataset contains records for 2.1 million users, for
each one of whom we extract three quantities: the
number of retweets, comments, and mentions.

4. Facebook [5]. The dataset contains ⇠2.5 million
Facebook wallposts from over 7, 000 users during
four months in 2011� 2013. For each user, we ex-
tract the number of links, statuses, photos, videos
or other posts made, posting time and the applica-
tion name, if the post was generated via an app.

For each dataset, we construct a two, three, four or
five dimensional distribution over the users, where each
user is viewed as a point in the space. To connect to
our restaurant metaphor, each user here is a table, and
each attribute corresponds to a cuisine.

4.1 Q1 - Flexibility and Generality FusionRP
is quite flexible and can fit different shapes of distribu-
tions. For instance, Fig. 2 illustrates three contour plots
of 2-D distributions that were generated by FusionRP.
We can see that with different configurations of model
parameters, the proposed method can model distribu-
tions showing the properties of indifference (Fig. 2(a)),
attraction (Fig. 2(b)), or repulsion (Fig. 2(c)).

FusionRP is general, and it can model d-
dimensional distributions for an arbitrary value d. Fig-
ure 3 shows the fitting results of FusionRP to the
“retweets VS comments VS mentions" distribution of
the Tencent Weibo dataset. Figures 3(a) and (c) show
the distributions of the real data, while Figs. 3(b) and
(d) depict the 2-D marginal distributions generated by
the fitted 3-D FusionRP. FusionRP also fits 4-D and

5-D Facebook data, but we do not present them due to
difficulty in visualization.

Evaluating goodness of fit for skewed data is chal-
lenging, even in the univariate case [9] and only gets
worse with more dimensions. We adopt the approach of
[10] and qualitatively measure the goodness of fit.

4.2 Q2 - Applicability Figures 1(a), (b) and 3 show
qualitatively that FusionRP provides a good fit to
real world datasets. Moreover, FusionRP has been
tested with up to 5-D real world data, and can work
for d-dimensional data for any d, in principle. We are
restricted by the unavailability of higher dimensional
skewed data.

To further establish applicability, we compare our
model with three other parametric distributions for
multi-dimensional data: the multivariate Gaussian, the
bivariate Yule [25], and the Almond-DG [10]. We do not
compare with the multivariate Pareto [1] here because
it cannot handle zero values, and this case exists in all
three of our datasets. For multivariate Gaussian and
bivariate Yule, we use maximum likelihood estimation
to fit the parameters. For Almond-DG, we use the code
provided by the authors of the original paper to estimate
the parameters. In Figure 1(c), we report the relative
ratio of the log-likelihood scores computed by five-fold
cross validation. We can see that in all three datasets,
the ratios of all the competing methods are greater than
1.0, which suggests that FusionRP achieves the best
performance in each of the datasets, despite having
fewer parameters than the Gaussian and Almond-DG
models.

0 2 4 6 8
−1.15

−1.14

−1.13

−1.12

−1.11

−1.1 x 106

Number of iterations

Lo
g−

lik
el

ih
oo

d

Converges after 5 iterations

(a) Convergence analysis

Input Size

T
im

e(
s)

  
  
 

(b) Running time analysis

Figure 4: Scalability of FusionRP: (a) Convergence anal-
ysis of the proposed method on the Phone call dataset. (b)
Running time analysis of the proposed method on synthetic
datasets.

4.3 Q3 - Scalability We now evaluate the scalability
performance of FusionRP. Figure 4(a) shows the con-
vergence analysis results of our method on the Phone

call dataset. We can see that our fitting procedure con-
verges after 5 iterations. For the other datasets, the
algorithm has a similar convergence rate, and converges
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(c) Repulsion

Figure 2: Flexibility of FusionRP: Contour plots of FusionRP with parameters s = 0.1 and (a) ↵1 = ↵2 = 1, (b)
↵1 = ↵2 = 10, (c) ↵1 = ↵2 = 0.1. For a fixed table size, notice that attraction means mixed tables are more likely while
repulsion means homogenous tables are more likely.

(a) Real: RT VS CM (b) FusionRP: RT VS CM (c) Real: MT VS CM (d) FusionRP: MT VS CM

Figure 3: Generality of FusionRP: Contour plots of FusionRP to the 3-D "retweets VS comments VS mentions"
distribution of the Tencent Weibo dataset. (a) and (c) are the contour plots of the real distributions; (b) and (d) are the
contour plots of the marginal distributions generated by the fitted 3-D FusionRP.

within 8 iterations. This fast convergence property with
linear time complexity of FusionRP with the input size
makes it efficient for large datasets. Figure 4(b) shows
the runtime analysis results of the proposed method on
synthetic datasets. We observe that the running time
of FusionRP is linear in the input size, n0 ⇥ d, and it
can process multi-dimensional datasets with hundreds
of thousands of data points within seconds on a com-
modity laptop with 4GB memory and 2.5GHz processor.

4.4 Q4 - Practicality In this section, we show
how we can leverage our proposed model to perform
outlier detection, and empirically evaluate our approach
on synthetic and real data. We first estimate the
parameters of FusionRP on the given dataset, and
use Eq. 3.5 to flag anomalies. The detection of the top
outliers is robust to the value of � which we set to 0.01 in
our experiments. Finally, we sort on the anomaly score
defined previously and examine further the top outliers.

Sanity Check: Injected Outliers. First, we
check whether the detected method can find artificially
injected anomalies. For each dataset, we inject anoma-
lies by randomly selecting five points in the dataset, and
amplifying the count of the selected points to 20 times
of their original values. Figure 5 shows the top five
anomalous points detected by FusionRP on the three
datasets. We can see that FusionRP perfectly detects
all the injected anomalies in each of the datasets.

Real Ouliers in Facebook Data. We now test the
method on 5-D Facebook wallpost data. The input is the
count of link, status, photo, video and other posts made
by a Facebook user. Further investigation of the top 40
anomalies of our algorithm revealed that 90% of these
outliers share a common theme: most of the posts were
links shared via applications that post on behalf of the
users on their Facebook wall without active participation
of the user. Some apps we found were gaming apps
like Farmville, Cityville and social platforms like Tumblr
and Twitter. Additionally, some of these users have a
small number of posts that were not app generated. It is
remarkable indeed that FusionRP is able to detect bot-
like behavior amongst users using only the total number
of posts made over a four month period.

To investigate ouliers flagged by our algorithm, we
generated a set of metrics and associated plots and
discover some interesting behavior. These plots are in
Figure 6.
• Time-day plot: Figures 6(a) and (c) provide the

heatmap of the number of user posts per hour (x-
axis) and per day (y-axis).

• Lag-correlation plot: Figures 6(b) and (d) pro-
vide a check of whether a time series is random or
not. Here, we plot the time difference between two
consecutive pairs of posts. Since bots usually post
at regular intervals, non-random behavior can be
easily spotted.

We present as examples two of the outliers, ranked 5 and
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(c) Tencent Weibo

Figure 5: Detecting artificial outliers using FusionRP: Automatic outlier detection by FusionRP on the three datasets:
(a) Phone call, (b) Game, and (c) Tencent Weibo. “TP" stands for an injection detected as a true positive. FusionRP

detects all the injected anomalies perfectly in all three datasets.

(a) Outlier 1, Hour of day (b) Outlier 1, Lag-correlation (c) Outlier 2, Hour of day (d) Outlier 2, Lag-correlation

Figure 6: FusionRP can detect meaningful outliers: Two representative outliers found by FusionRP in Facebook data
whose posts were made almost entirely by apps such as “Giveaway of the Day” and “Astrology”. Most posts were made at
one particular hour of the day everyday, and the lag between successive posts is non-random, indicating bot-like behavior.

32 which stood out as obvious anomalies to a human
evaluator. The first outlier has 104 posts which contain
links to other webpages. Figures 6(a),(b) show that
most of these posts are made during the same hour of
the day throughout the four months, exactly 24 hours
apart from one another. Our data indicates that these
posts were generated via an app called “Giveaway of
the day” that promises the user with daily discounts on
software applications, thereby verifying our claim.

The second outlier exhibits similar behavior, which
can be seen in Fig. 6(c). Outlier 2 has 120 link posts and
1 photo post in the period of four months. These link
posts were generated via an app, “Astrology”, without
the active participation of the user. The lag-correlation
plot (Fig. 6(d)) clearly indicates the non-random bot-
like behavior.

These examples illustrate FusionRP’s potential
use as a crude, fast way to detect outliers.

5 Conclusions
Modeling skewed multivariate distributions is an impor-
tant problem in the field of data mining. In this paper,
we propose a stochastic process, FusionRP to this end.
Specifically, our contributions are:
• Model: We propose a new model FusionRP for

skewed, d-dimensional distributions for d � 2. The

method is flexible enough to fit diverse real world
data with various types of interactions well, and
the parameters can still be efficiently estimated.

• Analysis: We study theoretical properties of Fu-
sionRP and describe theoretically supported and
scalable methods for parameter fitting and anomaly
detection.

• Applicability: We show that FusionRP is prac-
tical for real-world applications. It can be used not
only for modelling and understanding various user-
related activities, but also for quick and dirty out-
lier detection. In our experiments, FusionRP finds
bot-like behavior as outliers in Facebook wallpost
data.

• Reproducibility: Our code has been made avail-
able online2, for enthusiasts to play with, or extend.
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